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Abstract
We have performed calculations of the size effect in the temperature dependence
of the BaTiO3 nanograin ceramic specific heat and dielectric permittivity.
We took into account the distribution of grain sizes that exists in any real
nanomaterial. This distribution led to a distribution of the temperatures of the
size driven transition from the ferroelectric to the paraelectric phase because of
the relation between the temperature and the size. We calculated the transition
temperature distribution function on the basis of the size distribution function.
This function allows us to calculate the temperature dependence of any physical
quantity for a nanomaterial. As examples, we calculated the specific heat
and dielectric permittivity for nanograin ferroelectric ceramics. The results
demonstrate the strong influence of the size distribution on the observed
properties and especially on the values of the critical size and temperature
extracted from experiment. We carried out a comparison of the theory with the
measured specific heat and dielectric permittivity for BaTiO3 nanomaterial. The
theory developed described the experimental data fairly well. The possibility of
extracting size distribution function parameters as well as real values of critical
parameters from experimental data is discussed.

1. Introduction

The anomalies in the physical properties of nanomaterials, namely nanoparticle powders and
nanograin ceramics, are attracting growing interest from scientists and engineers because of
the size effects of properties useful for applications [1–3]. For ferroelectric nanomaterials
the most important size effect is known to be the transformation of the ferroelectric phase
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into a paraelectric one at some critical size [4]. Investigations of this phenomenon have been
performed experimentally and theoretically in several works (see e.g. [5–7]). However, most
of these works were devoted to the investigation of dielectric properties. The first experimental
studies of the thermal properties (e.g. the specific heat) of BaTiO3 polycrystalline thin film and
nanograin thick film were published only recently [8–10]. Two main effects were revealed,
namely the temperature of the specific heat jump appeared to be dependent on the average film
thickness or nanoparticle size and there was a distribution of these temperatures: the width
became larger with temperature decrease. The position of the maximum of this distribution
was reasonably supposed to be related to the temperature of the size driven ferroelectric–
paraelectric phase transition. The empirical expression for the dependence of the transition
temperature on the average particle size was derived from experimental points. The physical
mechanisms which led to this expression and to the distribution of the transition temperatures
were not discussed in [8–10]. Measurements of the dependence of the dielectric permittivity
on the average grain size in BaTiO3 nanograin ceramics reveal the ‘puzzle’ of a much larger
(about ten times larger) value of the critical size in the ceramics than in the nanopowder [11].
Up to now the physical reasons for this large difference have been unclear.

In the present paper we describe the main experimental results concerning size effects of
the specific heat and dielectric susceptibility in nanograin BaTiO3 on the basis of the equations
obtained by us earlier [5]. We took into account also the distribution of the particle sizes,
which exists in all nanomaterials. We showed that this distribution leads to a distribution of
the transition temperatures. It was shown that all observed properties must be smeared and
their maxima positions shifted by these distributions. The theory developed describes the
specific heat temperature dependence and the dielectric permittivity size dependence observed
for nanograin BaTiO3 ceramics fairly well.

2. The theoretical description of the specific heat in nanomaterials

The calculation of nanomaterial properties has in the past been performed in the
phenomenological theory framework on the basis of free energy functional variation (see
e.g. [6]). This procedure leads to a differential Euler–Lagrange equation with boundary
conditions originating from the surface energy. In the majority of the papers on this, the solution
of the equation and the calculations of some dielectric properties are performed numerically.
A method of analytical calculation was proposed recently [5] (see also [12, 13]). It was shown
that the properties can be obtained by minimization of the conventional type of free energy, but
with a coefficient of the squared polarization depending on the particle size, the temperature,
the contribution of the depolarization field and the extrapolation length.

This free energy view is expressed as follows [5]:

F = AR

2
P2 +

BR

4
P4 +

CR

6
P6 − P · E . (1)

Here P is averaged over the nanoparticle volume polarization, E is the external electric field,
BR ≈ b, CR ≈ c, where b and c are the corresponding constants of the bulk material. The
renormalized coefficient AR has the form

AR ≈ α · (T − Tcl(R)), (2)

where α is the inverse Curie–Weiss constant of the bulk, R is the size of the spherical
nanoparticles.

The temperature of the size driven phase transition Tcl can be approximately written as

Tcl(R) ≈ Tc

(
1 − Rcr(0)

R

)
, (3)
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Rcr(T ) ≈ Rcr(0)

1 − T
Tc

. (4)

Here Tcl(R) and Rcr(T ) are the critical temperature and radius of the phase transition at some
arbitrary radius R and temperature T respectively, Tc is the phase transition temperature of the
bulk material. Substitution of equations (3), (4) into equation (2) transforms AR into

AR ≈ α(T − Tc)

(
1 − Rcr(T )

R

)
. (5)

Equations (2)–(5) allow us to calculate the temperature and size dependence for all nanomaterial
properties averaged over the particle volume by conventional minimization of the free energy
(1).

For example, the dielectric permittivity has the form

εPE(T, R) =




ε0

(Rcr(T )/R − 1)
, R < Rcr,

1

α(T − Tcl)
, T > Tcl,

(6a)

εFE(T, R) =




ε0

2(1 − Rcr(T )/R)
, R > Rcr,

1

2α(Tcl − T )
, T < Tcl,

(6b)

ε0 = 1

α(Tc − T )
,

where εPE and εFE are respectively the permittivities in the paraelectric and ferroelectric
phases, and the first and second lines following the braces can be used respectively at
some fixed temperature and radius. Keeping in mind that we are interested in consideration
of the thermal capacity Cp of BaTiO3, let us write Cp for the first-order phase transition
on the basis of equations (1), (2). Taking Cp = −T d2�

dT 2 , one obtains the difference
Cp(T < Tcl) − Cp(T > Tcl) ≡ �Cp in the form

�Cp = α2

2b

T√
1 + 4αc

b2 (Tcl(R) − T )

, T < Tcl. (7)

Note that for the first-order phase transition, the transition temperature Tcl used in the second-
order phase transition in the form of equation (3) has to be shifted by �T = 3

16
b2

αc [5].

3. The distribution function of the transition temperature

In real nanomaterials the sizes of nanoparticles are usually distributed, the form and parameters
of the distribution function being dependent on the sample preparation technique. Let us
suppose that the distribution function of radius R has a Gaussian form, namely

f (R) = C exp

(
−
(

R − R0

σ

)2
)

, 0 � R � ∞, (8a)

where C is a normalization constant:

C = 2

σ
√

π
(
erf
( R0

σ

)
+ 1
) . (8b)
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Figure 1. The dependence of the average
grain size R̄ on the most probable grain size
R0 and the dispersion parameter σ .

In equations (8), R0 and
√

ln 2σ are respectively the most probable radius and the half-
width at half-height. Because in many experimental works the average radius R̄ of the
nanoparticles (obtained e.g. on the basis of an x-ray diffraction method) is given, it is useful
to write out the relation between R̄ and R0:

R̄ = R0 +
σ exp

(− R0
σ

)2

√
π
(
1 + erf

( R0
σ

)) . (9)

In figure 1 one can see that R̄ ≈ R0 at R0
σ

� 1.5, while at smaller values there is a

difference between them. In particular, at R0 → 0 the value R̄−R0
σ

→ 1√
π

.
It follows from equation (3) that the distribution of the radius must be the source of the

distribution of the transition temperatures Tcl. In accordance with the theory of probability [14],
the distribution function F(Tcl) can be expressed via f (R) in the following way:

F(Tcl) = f (R)

∣∣∣∣ dR

dTcl

∣∣∣∣ . (10)

Equation (10), incorporating equations (3), (8), yields

F(Tcl) = C1
Rcr(0)Tc

(Tc − Tcl)
2 exp

(
− R2

cr(0)T 2
c

σ 2

(
1

Tc − Tcl
− 1

Tc − T 0
cl

)2
)

, (11a)

C1 = 2

σ
√

π
(

1 + erf Rcr(0)Tc

σ (Tc−T 0
cl)

) , (11b)

where T 0
cl ≡ Tcl(R = R0) is the most probable transition temperature.

Using the distribution functions in the form of equations (8) or (11) one can average any
physical property written as a function of the nanoparticle radius or temperature. For example,
when calculating the dielectric permittivity, it is possible to average with f (R) and F(Tcl)

the expressions in the first and second lines, respectively, of equations (6). The results of the
averaging are depicted in figures 2, 3. Figures 2 and 3 are built up respectively on the basis of
the following equations:

ε(R0, T ) = ε0(0)

q |1 − t|
∫ ∞

0

f (R) dR√(
1 − Rcr(T )

R

)2
+ δ2

(12a)
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ε (
R

)/
ε 0

(0
)

Figure 2. The dependence of the relative dielectric permittivity on the average grain size R̄
calculated on the basis of equations (12a), (8) for different dispersion parameters σ : 1 (1), 2 (2),
10 (3), 50 (4), 100 (5).

εε(
T

)/
εε 0

(0
)

Figure 3. The dependence of the relative dielectric permittivity on the temperature, calculated on
the basis of equations (12b), (11) for the following values of the parameter R0/σ : 26 (1); 5.2 (2),
2.6 (3), 0.65 (4), 0.26 (5), 5.2 × 10−3 (6).

and

ε(t) = ε0(0)

q

∫ 1

0

F(x) dx√
(t − x)2 + δ2

, (12b)
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Table 1. The experimental data and the parameters for the grain size distribution function extracted
from the observed temperature dependence of the BaTiO3 nanograin ceramic specific heat.

Experiment [10] R̄ (nm) 82.5 45.0 32.5 17.5
Tm (K) 393.0 385.8 372.0 332.5
�Thw (K) 0.3 5.2 7.8 8.1

Theory R0 (nm) 82.5 45.0 32.5 17.5
σ (nm) 4.000 7.168 5.302 1.807

where x ≡ Tcl
Tc

, t ≡ T
Tc

and δ = 0.01 is a small parameter introduced to restrict the maximum
height of the permittivity; q = 2 and 1 for the ferroelectric and paraelectric phases, respectively;
ε0(0) = 1

αTc
. A more detailed discussion of the influence of the size distribution on the dielectric

susceptibility and the peculiarities depicted in figures 2, 3 will be discussed later.

4. Comparison of calculated and measured specific heat

To obtain a theoretical description of the temperature dependence of the specific heat observed
for nanograin BaTiO3 ceramics, we performed the averaging of equation (7) with the help of
the distribution function F(Tcl) in the form given by equations (11). That is, we carried out
the calculation of the integral

�Cp(T 0
cl, T, σ ) = α2T

2b

∫ Tc

0

F(Tcl, T 0
cl, σ ) dTcl√

1 + 4αc
b2 (Tcl − T )

. (13a)

Using the relation between the half-width at half-height of f (R) and F(Tcl, Thw), namely

σ
√

ln 2 = Tc�Thw Rcr(0)

(Tc − T 0
cl)(Tc − Thw)

, �Thw = Thw − T 0
cl, (13b)

it was possible to extract σ from the observed �Thw values and then R0 values from figure 1.
The data and experimental parameters obtained are presented in table 1. They illustrate the
possibility of extracting the parameters σ and R0 of the distribution function from experimental
data. To obtain the σ and R0 values given in table 1 we took Rcr(0) = 4 nm [10] and the values
of T 0

cl were calculated on the basis of equation (3) at R = R0.
In figure 4 we show the comparison of the calculated T 0

cl = Tcl max ≡ Tm with experimental
data obtained for several R̄ sizes, for the case considered: small enough half-width that the
value of R0 practically coincides with R̄max. It can be seen from figure 4 that the theory fits
the experimental points very well. It should be noted that although the measurements were
performed on 500 nm BaTiO3 films with different grain sizes, for films with thickness greater
than 400 nm the specific heat practically coincides with that of the bulk (see [8, 9]), so 500 nm
BaTiO3 film can be considered as bulk ceramic.

Therefore, the only parameter that was taken from measurements of the specific heat is the
value of the half-width �Thw, because Tcl can be calculated via R0. In view of the first-order
nature of the phase transitions in BaTiO3, we calculated the shift of the transition temperature
as �T 0

cl = 3
16

b2

αc ≈ 28 ◦C for the values of parameters taken from [15] for BaTiO3 bulk material.
The results of the theoretical calculations on the basis of equations (13) using equations (11)
and the values of σ given in table 1 are depicted in figure 5 as a solid curve. It can be seen that
this line fits the experimental points fairly well. Note that the slope of the curves is related to
the thermal capacity in the paraelectric phase (T > 400 ◦C).
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Figure 4. The dependence of the ferroelectric–paraelectric phase transition temperature on
the inverse average grain size for BaTiO3 nanograin ceramic. Solid line—theory; squares—
experiment [10].
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Figure 5. The temperature dependence of the specific heat for 500 nm BaTiO3 films with different
grain sizes, calculated on the basis of equations (11), (13) (solid curve) and experimental data taken
from [10] for the following grain sizes: 35 nm (◦), 65 nm (×), 90 nm (�), 165 nm (♦). The values
of the experimental data and fitting parameters are given in table 1.

5. Discussion

5.1. Thin film roughness as a possible source of the transition parameter distribution

Experimental data obtained in [8, 9] for the temperature dependences of the BaTiO3 specific
heat for films with different thicknesses look like those for ceramics with nanosize grains
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(see figure 5). In particular, it was shown that when the thickness of the film is reduced,
the phase transition temperature decreases, while the smearing of the anomaly increases. The
anomaly is quite weak for 40 nm film and it was not detected for 20 nm film. We draw attention
to the fact that a sharp increase of the film roughness was revealed for the ultrathin films. In
our view, the latter could be the reason for the diffusiveness of the specific heat anomaly near
the thickness induced phase transition from the ferroelectric to the paraelectric phase in the
thin films [8, 9]. Therefore, the distribution of the film thickness has to be taken into account
when considering thin film properties. In particular, the calculations of the specific heat of the
films can be performed similarly to the calculations in section 4 for nanograin ceramics, and
allowing for the temperature of the thickness induced phase transition can be written in the
following form [12]:

Tcl = Tc

[
1 − l2

0(0)

l

(
1

λ1 + ld
+

1

λ2 + ld

)]
. (14)

Here l2
0(0) = γ

α0 Tc
, l2

d = γ

4π
and l, λ1, λ2, γ and α0 are respectively the film thickness, the

extrapolation length, the coefficient of the squared polarization gradient in the free energy
functional and the inverse Curie–Weiss constant. Comparison of equations (14) and (3) shows
that the dependences of Tcl on the particle size R and film thickness l are of the same type.
Detailed calculations of the specific heat anomalies in thin films allowing for the difference
in geometry of the films and nanoparticles are in progress now. The comparison of the
calculated and observed anomalies will give valuable information about the parameters of
the film thickness distribution function.

5.2. Influence of the size distribution function on the critical temperature and radius

It is generally believed that the critical temperature and radius of the size driven ferroelectric–
paraelectric phase transition can be obtained from significant points for the properties,e.g. from
the maximum of the dielectric permittivity. However, in real materials there is a distribution
of transition temperatures Tcl (see equation (11a)) related to the distribution of sizes. In the
general case the physical reason for the uncertainty as regards the physical meaning of the
parameters which correspond to the observed property maxima is the competition between the
distribution function and the positions of the property maxima. In particular, for the dielectric
permittivity the maxima are at R = R0 and R = Rcr (see equations (8a) and (12a) respectively);
so the distribution of the particle sizes makes it unclear whether the position of the observed
ε(R) maximum has to coincide with the Rcr value. Let us consider this in more detail.

First of all, when the width of the distribution function is very small (σ → 0), i.e. it can
be represented as a δ function, there is only one Tcl value and so the positions of the ε(T ) and
ε(R̄) maxima do indeed define the critical temperature and critical radius respectively. This
statement could hold for small enough σ �= 0 also. This situation, which is only found when
using certain sample preparation techniques, did arise for the BaTiO3 nanograin materials
investigated in [8–10]. The latter is related to the quantitative criterion R̄ ≈ R0 at R0/σ � 1.5
(see table 1). It follows from equation (9) that at R̄ ≈ R0 the contribution of the second term can
be neglected, similarly to the case for the limit σ → 0. Therefore the criterion R̄

σ
≈ R0

σ
� 1.5

can be considered as the condition for extracting critical parameters (temperature and radius)
from the positions of the property maxima to be permitted; i.e. one can write the necessary
relation between the distribution function parameters as

σ < 2
3 R0. (15a)

But for many real samples this criterion is not fulfilled. When R0
σ

< 1.5 or R̄
σ

< 1.5 the
difference R̄ − R0 increases with increase of σ . Note that at R0 → 0 average radius R̄ → σ√

π
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Figure 6. The size dependence of the dielectric
permittivity for BaTiO3 nanograin ceramics. Solid
line—theory; points—experiment [11].

so that R̄ is restricted by this value; i.e. R̄min = σ√
π

(see figure 1). The same limit can be

achieved at R0 �= 0, σ → ∞, giving R̄min → ∞. The latter case corresponds to bulk
materials, while the former case shows that for nanomaterials there is a restriction on R̄ related
to σ values. It is obvious that with increase of σ , R̄min can become larger than Rcr, so it can
become impossible to extract Rcr from the experimental data. To obtain the actual value of
Rcr , the size distribution function width has to satisfy the condition

σ√
π

< Rcr(T ). (15b)

To illustrate this, we have depicted in figure 2 the dielectric permittivity (ε(R̄)) dependence for
Rcr(T = 196 K) = 8 nm [10]. It can be seen that condition (15b) is fulfilled for curves 1–3
and so their maxima positions correspond to R̄max ≈ Rcr(T ). Curves 4 and 5 are strongly
shifted from the Rcr value, because for them R̄min = σ√

π
takes values of about 25 and 50 nm

respectively, and these values are several times larger than Rcr(T ) = 8 nm.
It should be noted that conditions (15a) and (15b) coincide with one another at R0 =

3
2

√
π Rcr; i.e. R0 must be about three times larger than Rcr . In addition, equation (15a) reflects

the desirable qualities of nanograin ceramics, while equation (15b) is the necessary condition
for it to be possible to extract the Rcr value from the observed size dependence of a property.
In view of the fact that every R̄ corresponds to one sample with its own distribution function,
defined by σ and R0 values, it is obvious that the curves depicted in figure 2 with fixed values
of σ for every curve merely illustrate the size distribution role rather offering a description of
any real experiment. On the other hand, we have shown by fitting the ε(R̄) dependence for
BaTiO3 nanoceramics observed in [11] with equations (12a), (8a) that condition (15a) is not
satisfied for the majority of the R̄ points (although it is for two points in the ‘tails’ of the curve)
and condition (15b) is not satisfied for any R̄ experimental values (see table 2 and figure 6),
keeping in mind that for BaTiO3, Rcr(T = 300 K) = 16 nm. Note that when calculating the
solid curve in figure 6 we used δ = 0.001 in equation (12a) and took the maximal intensity as
a fitting parameter; this led to a fairly good description of all of the ε(R̄) values.

In the general case the condition (15b) is more restrictive than (15a). Therefore the
essential dependence of the dielectric permittivity maximum position on the particles size
distribution function width σ obtained and the estimation of conditions (15) can shed light
upon the ‘puzzle’ of the much smaller (more than ten times smaller) Rcr value in nanopowder
than in nanograin BaTiO3 ceramics, derived from the observed ε(R̄) maxima position [11].
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Table 2. The values of the parameters R0 and σ extracted from experimental data for ε(R̄) for
BaTiO3 nanograin ceramics with maxima around R̄ = 750 nm [11].

R̄ (nm) 350 450 550 650 750 1000 1250 1500 2250 3250 4250 5500
σ (nm) <100 150 350 550 850 1650 2000 1750 1750 2300 >2000 >2300
R0 (nm) 350 450 541 599 562 159 324 1082 2126 3146 4250 5500

It should be stressed that conditions (15a) and (15b) are satisfied for the ceramics used for the
specific heat measurements, as one can see from table 1.

In the temperature dependence ε(T ), a shift of Tmax to larger temperature with increase of
σ was obtained again (see figure 3). While a decrease of the value of the maxima ε(R̄ = R̄max)

with increase of σ was obtained for all of the σ values considered (see figure 2), the ε(T = Tmax)

values showed both decreases (see curves 1–4 in figure 3) and increases (see curves 5, 6 in
figure 3) with increase of σ . The latter ‘peculiarities’ are related to the case Tcl → Tc = 393 K,
as one can see from equation (11a), because larger σ values correspond to bulk material.
Because of the distribution of Tcl, it only seems to be possible to extract from the experimental
data the most probable transition temperature T 0

cl = Tcl max. This was confirmed by specific
heat measurements. Indeed, the Tm = Tcl max values obtained from the specific heat maxima
positions (see table 1) were fitted fairly well by equation (3) at R = R0 = R̄max (see figure 4).
From figure 3, for the temperature dependence of the dielectric permittivity one can see that
the parameters R0/σ for the curves 1–3 satisfy condition (15a), while the others do not satisfy
it. One can also see that the Tm values for curves 1–3 are close to one another and to the value
of T 0

cl , i.e. to the most probable transition temperature. This is similar to the specific heat case.
In view of the fact that the different curves in figure 3 correspond to different samples with
different values of R̄, the smearing of curves 3, 4, which correspond to smaller R̄ values, looks
like the behaviour of the specific heat also.

From the general point of view, the essential influences of the size distribution function
characteristics σ and R0 on the dielectric susceptibility maximum position and height as well
as on the specific heat open the way to the extraction of R0 and σ from experimental data,
as was shown in section 4. These parameters are very important for the description of the
properties of real nanomaterials and critical parameters of the size driven phase transition.
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